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ABSTRACT

Methods are presented that can be used to make multiple, overset grids

communicate in a conservative manner. The methods are developed for use with the

Chimera overset method using the PEGSUS code and the OVERFLOW solver.
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NOMENCLATURE

speed of sound, a = _TRT

specific heat at constant pressure

total energy

force

Jacobian of transformation

coefficient of thermal conductivity

coefficient of turbulent thermal conductivity

momentum

freestream Mach number

mass flow rate entering

mass flow rate exiting

pressure

Prandtl number

turbulent Prandtl number

heat flux

Reynolds number based on freestream conditions and reference length L,

p_VL
Ret. -

bt_

temperature

time



tl, V, W

W

U,V,W

x,y,z

velocity components in x, y, and z directions

rate of work

contravariant velocity components

cartesian coordinates

GREEK

Y

t_

_T

_,q,_

ratio of specific heats

stress

computational time or shear stress

air density

coefficient of viscosity

coefficient of turbulent viscosity

transformed coordinates

SUBSCRIPTS

a ambient condition

L reference length

,_ freestream condition

x, y, z cartesian direction

v viscous term



SUPERSCRIPT

n time level

xii



CHAPTER 1

Introduction

The field of Computation Fluid Dynamics (CFD), is the study of fluid flow using

numerical methods to solve equations that govern the physics of these fluids. Tradi-

tional methods for understanding fluid dynamics have been the use of experimental and

theoretical methods. However, since the invention of the digital computer, and more

recently the high-speed digital computer, the field of CFD has grown tremendously in

both its capabilities and numerical methods. Other factors that have contributed to the

growth of CFD methods are relative computer costs, increased performance and avail-

ability of computers, including access to high-speed multiprocessor supercomputers all

the way down to the workstations that have become a common desktop tool to the

researcher [2,3].

Today, two major grid systems exist for solving complex three-dimensional flow-

fields [4]. The difference lies in the way the flowfield is discretized. In the first method,

the flowfield is discretized into triangular-shaped elements in two dimensions, and tet-

rahedral elements for three-dimensional fields (Figure 1.1). This type of grid is called an

"unstructured grid" since the grid points cannot be associated with grid lines. For the

second method, the flowfield is discretized into quadrilateral elements in two dimen-

sions, and hexahedral elements in three dimensions (Figure 1.2). In this method, the

grids are called "structured grids" since the grid points can be associated with grid lines

in an ordered manner [4].

Structured grids can be divided further into two more groups. For complex geome-
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tries, it is unrealistic to create a single grid. These geometries are usually modeled using

several grids that adequately resolve specific areas on the geometry of interest. The

resulting grid system is then combined using some method for communication between

zones. This is where the two submethods differ. One method is the chimera grid

approach, or overset method, where grids overlap each other. The second method is

where grids abut against each other, and are called patched grids or blocked grids.

For the research presented here, the manner in which patched, structured grids com-

municate and pass information between each other will be investigated. Furthermore,

this method will be incorporated into a flow-solver that was developed for overlapping

grids. There are several reasons for doing so. The method in which overlapped grids

communicate with each other is strictly by interpolation. The physics of the flow across

the interface are not computed and thus conservation is not maintained [14]. Under cer-

tain circumstances, the method can be conservative. However, this is rarely achieved

when modeling real world complex geometries. Secondly, incorporating a patched grid

interface will allow users to model regions of the flowfield with the option of a conserva-

tive interface. This will allow flow discontinuities to pass across the patched interface

smoothly as if the interface is transparent to the flowsolver. Lastly, it is sometimes con-

venient to model portions of the flowfield with a patched grid instead of overlapping

grids that require a certain amount of overlapping to work correctly [14]. This also

requires that portions of the overlapped grids be cut out of the geometry being modeled

(Figure 1.3), which is a process that can be extremely time consuming [15].

This study will concentrate its efforts in providing a patched grid interface for the

OVERFLOW flow-solver with the option of making the developed scheme fully conser-
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vative. OVERFLOW is an in-house code of NASA Ames Research Center for solving the

thin layer Navier-Stokes equations with the option of using overset grids [12]. OVER-

FLOW requires the use of a preprocessor program called Pegsus. Pegsus provides

OVERFLOW the appropriate information on how a set of overlapping grids, or zones,

modeling a geometry communicate with each other [11]. Pegsus was written for overset

grids and will need to be modified and new procedures implemented in order for it to

handle patched grids.

The current research project was divided into two areas. The first portion of research

was to investigate how to convert patched grids into overset grids. The method

employed here is called volume extension and was briefly examined and determined to

be too time consuming for the end user. Not only does the user have to extend the

patched grids to create an adequate overlapping region, but also has to use Pegsus to

create interpolation stencils and hole cuts if necessary. Although the results were some-

what promising, the volume extension program developed was determined not to work

under certain circumstances due to grid topology and that an excessive amount of user

input to the program was necessary.

The second portion, and the bulk of this research, was to modify and implement new

methods into both Pegsus and OVERFLOW in order for these programs to handle

patched grids. This was further divided into two separate development steps. The first

step was to enhance Pegsus and ensure that the interpolation stencils created for patched

grids were valid and would work correctly in OVERFLOW. To quickly test this new ver-

sion without making any significant changes to OVERFLOW, the flow-through bound-

ary condition was coded. This boundary condition was easily incorporated into
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OVERFLOW sincethe method used to update boundary points for overset grids is simi-

lar to how the boundary points for patched grids with the flow-through condition will

be updated. The difference lies in where the flowfield information is obtained. For over-

set grids, a boundary point, or a recipient point, lies within a grid cell of another grid, or

a donor grid. The node values of this donor cell are used to update flowfield quantities

strictly by interpolation. For the flow-through condition, the boundary point lies on a

common plane or interface with the donor grid. Half the update for this recipient point

will be from the grid it belongs to. The remaining half of the update will be from the

donor grid using the interpolation stencils from Pegsus. The only requirement is that the

update information can only come from interior node points of both the recipient and

donor grids. These enhancements to Pegsus for allowing patched grids and the flow-

through condition will also be useful when incorporating the conservative patched grid

interfacing into OVERFLOW.

The second step for the patched grid capability will be to implement a finite differ-

ence scheme for patched interfaces into OVERFLOW. Here, one-half of the flux differ-

encing is computed for each recipient grid. The remaining half, from the donor grid, is

computed and combined using communication information from Pegsus. Although the

scheme to be presented is fully conservative for patched boundaries with point-to-point

matching, it does have further potential of being fully conservative for boundaries with-

out point-to-point matching.

The test case for all three methods investigated, the volume extension, flow-through

boundary condition, and the fully conservative finite difference approach, will be the

ONERA M6 wing. Comparisons will be made to a single zone case as well as to experi-
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mental results.
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CHAPTER 2

Governing Equations of Fluid Mechanics

The fundamental equations of fluid mechanics are based on three laws, the Conser-

vation of Mass, Conservation of Momentum, and the Conservation of Energy laws.

Applying these laws to a fluid flow results in five, coupled, non-linear, partial differen-

tial equations. The first equation is derived from the conservation of mass and is known

as the continuity equation. The Momentum equations are derived from the conservation

of momentum law and represent the momentum components in three orthogonal direc-

tions. The energy equation is derived from the conservation of energy, which is the First

Law of Thermodynamics [1].

For a cartesian coordinate system, the continuity equation can be written in conserva-

tion-law form as (Appendix A) [1]:

a(pv) a(pw)_t)__.pp+ t)(pu) + + 0 (2.1)

Ot 0x 0y OZ

Here, u, v, and w represent the three velocity components in the x, y, and z directions

respectively. Lastly, p is the density. The next set of equations are the momentum

equations, also known as the Navier-Stokes equations. However, it is a common practice

to include the continuity equation and the energy equation (defined later) as the set of

equations known as the Navier-Stokes equations [2].
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Written in conservation law form, the momentum equations are (Appendix B) [1]:

O(pu) + c)(pu2 + p) + c)(puv) + O(puw)_ O_xx + O%xy +_O'Cxz

0"----_ Ox Oy Oz Ox -_y Oz
(2.2)

c)(ffT) + O(puv) O(pv2 + p) + _ + +
_)(pvw) _%xy O%yy O%yz

, -_x + Oy _)z -_x _ -_z
(2.3)

O(Pw 2+ P) O'_xz O%yz 2%O(pw) a(puw) 3(pvw) + _ + + zz
-_ + _x + _y _z _xx _ _z

(2.4)

Where p is the pressure and Xxx, T, yy, "Czz , Sxy' "Cxz' T'yz are the viscous stress tensors. They

are defined by the following equations:

_W

-, ,.,--_2r au OVoy _zz 5)'txx = _l.t[2_ (2.5)

2 r Ov Ou Ow)'r,yy = -_g_2-_yy t)x -_z
(2.6)

2 [ 3w 3u Ov)"t:zz : 3g_2_zz ax _yy
(2.7)

%xy = bt + "_X
(2.8)

"Cxz= g -_x +
(2.9)

av
%yz = g +

(2.10)
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The last equation, the energy equation, is defined as follows (Appendix C) [1]:

OE t O((E t + p)u) O((E t + p)v) O((E t + p)w)
--+ + + -
bt bx by bZ

c)(U'Cxx + VT,xy + WT, xz - qx ) c)(UT, xy + VT,yy + WT, y z - qy)
+ +

i)x

()(UT, xz + V%y z + WT, zz - qz )

()Z

(2.11)

Where qx, qy, qz are the heat flux terms. They are defined by the following equations:

_T

qx = -k • _)x (2.12)

/)T
= -k- 4-- (2.13)

qy yo

_T
- -- (2.14)

q z -k * Oz

Where k is the coefficient of thermal conductivity, defined as:

k-- Cp_t__ (2.15)
Pr

where ct, is the specific heat at constant pressure, kt is the coefficient of viscosity. Lastly,

Pr is the Prandtl numbers. The Prandtl number is a ratio of the energy dissipated by

friction to the energy transported by thermal conduction. This can be seen as the ability

of a fluid to diffuse momentum and energy on a molecular level.
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Vectorization of Navier-Stokes Equations

Equations (2.1), (2.2), (2.3), (2.4), and (2.11) can easily be put into vector form. Rewrit-

ten, they are:

3P +9(pw)- 0
at /)x ay az

a(puv) a(puw) azxx bxx_,a(pu) + a(pu: + p) + + _ + + __
at ax ay az ()x

a(pVW) O'Cxy aT, yy aT, y za(pv)+a(puv) a(pv 2+p)+_ + +
at a_ + ay az _ _ az

/)(puw) a(pvw) a(pw 2+p)_ a'Cxz a'Cyz OXzz
a(pw) + + + + + -- (2.16)

at ax ay az -_x -_y az

aE t 3((Et+p)u) i)((E t+p)v) a((E t+p)w)

at + ax + ay _)z

a(U'Cxx at" VT'xy + WT'xz -- qx)

aX

a(UXxy + VXyy + WXy z - qy)

+ ay
+

_( ltT, xz -I- V'Cy z -t- WT, zz -- qz )

az

It follows then that the Navier-Stokes equation in conservation-law form may now be

written in vector form as:

/)E t)F /)G
20 + + +__=
2--7 az

(2.17)
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Where Q, E,F,G represent the inviscid flux vectors:

Q __

P

p_

p_

LEtj

g _,

pI, l

2
pu +p

puv

9uw

(Et + P)t

F

pv

puv

2
pv +p

pvw

(E t + p)v

G

pw

puw

= _VW

2
pw +p

(Et+p)w

(2.18)

And E v, F v, Gv represent the viscous flux vectors:

g v

0

T,xx

"Cxy

T,xz

U'Cxx + VT,xy + WX'xz - qx

0

"r,xz

T'yz

"CZZ

+ WZzz - qzUT, xz + VT, y z

0

"_xy

"Cyy

"_yz

UT,xy + VT, yy + WZy z - q_
(2.19)

The next step will be to non-dimensionalize these equations.
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Nondimensional Form Of Navier-stokes Equations

The Navier-Stokes equations are often put in nondimensional form. There are

several advantages to doing so. First, characteristic parameters such as the Reynolds

number, Prandtl number, and Mach number can be varied independently from each

other. The second reason is that flow variables such as velocity are normalized (the

resulting values are often between 0 and 1) [3]. For this analysis we will nondimension-

alize the governing equations with freestream values for the flow variables and a refer-

ence length for the spatial variables. The following non-dimensionalizing variables will

be used [3]:

x* x u* = u_u p, _ p
L Vo_ Poo

y* - Y v* v- L = p* = J---,

z* z w* w poo Voo-T-
L V_, T* = --

t* = _t___ I.t* = I't Too

L/ Voo l't°° e* e

(2.20)

Where the terms with asterisks are nondimensional. Applying these nondimensional

variables to Equation (2.17) we get (Appendix D) [3]:

0E* OF* 0G* 0E*v 0F*v 0G*v
OQ* +_+_+_= _+_+_

Ot* Ox* by* OZ* Ox* Oy* Oz*

(2.21)
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Where Q*,E*, F*, G* are:

Q* 1

p'U*

p'v* E*=

p'w*

E* t

p'u*

p*u .2 + p*

p*u*v*

p*U*W*

(E* t + p*)v*

p'v*

p* U* V*

p*v .2 + p*

p*V*W*

(E* t + p*)v'

p'W*

p* U*W*

p*V*W*

p*w .2 + p*

(E* t + p*)w _

(2.22)

And E'v, F'v, G*v are:

E* v

F*
v

G*
v

0

XX

T,*
XZ

u*T,*xx + V*T,*xy + W'T,*

0

T, _
xy

YY

T,*
yz

_*yz q*yu*T,*xy + v*T,*yy + W*

0

T,*
xz

T,*
zz

u'T,* + + w*X*zz - q*zxz v* _'*yz

(2.23)
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Also:

Et* + w .2)
= p* e* + u*2 + v*2

2
(2.24)

The viscous stress tensors are also given by:

2g*(2au* av* aw*_

'r'*xx = S R e----L\ _ ay* 3z* J
(2.25)

1:* 2g*(2()v* ()u* ()w*_

YY - 3 _e-e k \ _y* - _x* ()Z* )

(2.26)

2g____*( aw* au* av*)

_* = ReL\2-_z* ax*zz "_ ay* J
(2.27)

"C*xY ReL\by* + 3x*J
(2.28)

_, = _,(aw,+au,)
xz R e L \ ax* _z* J

(2.29)

** ,, (av, aw,)
yz = "R-e-eeL \_z,z, + ay* J

(2.30)

The heat flux terms are given by:

g* aT*

('I - 1 )M2_oReLPr Ox*

(2.31)

q*y
g* ()T*

('1 - 1 )M2,,,,ReLPr _Y*

(2.32)
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q*z = _t * OT* (2.33)

(_[ - 1 )M2ooReLPr Oz*

We can now rewrite Equation (2.22) in its final form. For convenience we will drop the

asterisks for the remainder of this work. The Reynolds term has been factored out from

previous derivations.

OQ+OE OF OG 1 (OEv OFv OGv_

O----t -_x + -_y + O----Z= R e L _.--_x + -'_-y + OZ ) (2.34)

The next step in preparation for applying a numerical scheme to the Navier-Stokes

equations will be to apply a coordinate transformation to the governing equations.
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Coordinate Transformation

The governing equations derived thus far have been expressed in a cartesian coordi-

nate system (x, y, z). This system is called the physical domain. For finite difference

methods, this type of coordinate system is most efficient. However, for real world geom-

etries, such as a complete aircraft, an orthogonal coordinate system is unrealistic. These

type of configurations require a nonorthogonal coordinate system. Therefore it is neces-

sary to transform the physical domain, (x, y, z) coordinates, to a computational domain,

(_, q, 4) [2]. This transformation not only creates and allows an equally-spaced compu-

tational domain, but also allows the user to align one of the computational directions

along a specific physical boundary such as an aircraft surface. This will help in applying

boundary conditions. For this analysis, the Xi direction(G) is the streamwise direction,

Eta(rl) is the spanwise direction, and finally, Zeta(_) is the normal or viscous direction.

Figure 2.1 illustrates the physical and computational domains. For a completely general-

ized transformation, consider the following transformation:

= _(x, y, z) (2.35)

Tl = T1(x, y, Z) (2.36)

= _(x, y, Z) (2.37)

I; = t (2.38)
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The inverse of these equations are:

x - x(L n, ¢) (2.39)

y : y(_, 11, ¢) (2.40)

z = z({, n, ¢) (2.41)

t=l; (2.42)

Applying the chain rule of partial differentiation, the partial derivatives of Equations

(2.39) through (2.42) are:

_ Ona a¢ aa a{a +
ax axa{ axaq axa_

(2.43)

a_a +a_n_+__
Oy ayO¢ ayan ayO¢

(2.44)

_ __ acaa aCa +aria +__
az aza¢ azan aza¢

(2.45)

_ ___ a¢ 8 a_:aa aCa +aq a +___+___
at 8ta¢ _)tall 8ta¢ ataz

(2.46)

The metrics in these equations are:

a¢ _ an _ a¢
_x - Cx,_ - nx,_x = ¢_

(2.47)

a¢ an a¢
ay = ¢Y'_ = rly,_ = Cy

(2.48)

a¢ _ an _ a¢ (2.49)

a¢ _ an a¢ a,_
- ¢t,_ = rlt,-_ = Ct,_/ = '_t = 1

(2.50)
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These metrics, in general, cannot be determined using analytical methods. Therefore, a

numerical method must be used. First, consider the following differential expressions:

dt = txd'c + t_d_ + trldr I + t_d_ (2.51)

dx - xxd_, + x_d_ + xqd'q + x_d_ (2.52)

dy = yzdx + y_d_ + y.qd'q + y_d_ (2.53)

dz = zxd'r, + z_d_ + zrldrl + z_d_ (2.54)

From Equation (2.42), time, t, is only a function of the computational domains' time, x.

Therefore the following partial derivatives must equal zero.

8t Ot bt

at an
-0 (2.55)

Also using the relationship in Equation (2.42), the partial derivative oft with respect to

must equal one. With this information and Equation (2.55), we can rewrite Equation

(2.51) as:

dt= dx (2.56)

Placing Equations (2.51), (2.52), (2.53), and (2.56) in matrix form we have:

dx

dy

_d

1

_f'C

Yx

Z. c

000

x_ x n x;

Y¢ Yn Y¢

z_ zn z;

- 7

dx _

d_

dn
(2.57)
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Reversing the role of the independent variables, it can be shown the reverse is true with

the following differential expression:

dx = dt (2.58)

d_ : {tdt + {xdX + _ydy + _zdZ (2.59)

dy = 11 tdz + rlxd_ + rlydrl + rlzd_ (2.60)

In matrix form we have:

dz = _td'c + _xd_ + _yd'q + _zd_ (2.61)

d'¢ l

61_1

dill

dCI

1 0 0

Cx

Tit I]x lqy llz

_t _x _y _z

dt l

axl

ayl

_az3

(2.62)

From Equations (2.57) and (2.62), the following must be true:

1 0 0 0

_t _x _y _z

_t qx qy TIz

¢t ¢x ¢y ¢Z

1 0 0 0

xx x¢ xq x¢

Yz Y¢ Yn Y¢

z x z_ z n z_

-1

(2.63)

Using a symbolic math program such as Maple V, the right-hand-side of Equation (2.63)

was solved for (Appendix E) [3]. The transformation metrics can now be solved for with

the following results:

Cx = J(ynz¢- y¢z n) (2.64)

_y = j(x¢z n _ XnZ¢) (2.65)
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_z = J(xrlY_- x_Yrl)

qx = J(y_z_- y_z_)

fly = y(x_z_- x_z_)

rlz = y(x_y_- x_y_)

_x = J(Y_Zrl - YrlZ_ )

_y = J(XrlZ _- x_zrl)

_z = J(x_yq - x.qy_)

_t = -(x'_x + Y'c_y + z'c_z)

1"It = -(xx'qx + y.crly + zxrl z)

_t = -(Xx;x + Y'C_y + Z'C;Z)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

(2.74)

(2.75)

Equations (2.73), (2.74), and (2.75) can be rewritten using the previous spacial metrics as:

_t : -J[xx(YrlZ_-Y_Zrl )+ Y'c(X_Zrl-xqz_ )+ zx(xrlY_-X_yq)] (2.76)

tit = -J[xx(Y;Z _ - y_z;) + yx(x_z; - x;z_) + zx(x;y _ - x_y;) ] (2.77)

_t = -J[xx(Y_Zrl-YqZ_ )+ Yx(XrlZ_-X_Zq ) + zx(x_Yrl-xrlY_)] (2.78)

Where the Jacobian, J, is defined as:

J _ O(_,rl,_) _ 1 (2.79)

O(x,y,z) x_(yqz_- y_Zq) + (-xrl(Y_Z _ - y_z_)) + x_(Y_Zrl - YrlZ_)
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Applying this generalized transformation to the governing equations we get (Appendix

D) [3]

ap , (< a< </
-aT+<+a--4+g- Re_t_+-<-+ a; )

(2.80)

Where

7

1 1

0 = 7 n,,iE = 7

°'1E t

9u

p u U + _xP

9vU + _yP

9wU + _zp

(E t + p)U - _tP

9V

9uV + qxP

1 9v V + qyp7

9wV + _qzp

k(Et + p) V - "qtP

1

pW

9uW + _xP

9vW + _yP

pwW + _z p

(E t + p)W - _tl

(2.81)

Where U,V, and W are the contravariant velocity components defined as:

U = _t +_x y +_yv+_zv

V = Tit + qx y + 1]yV + TlzV

w = 4, +_xy + _y"+ _z"
(2.82)

The contravariant velocities represent the velocity components that are perpendicular to

planes of constant _, rl, _ [3].
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And the viscous flux terms E v, F v, G v are:

: _(_xEv + _yF v + _zGv )

F v = (rlxE v + rlyF v + rlzG v)

a-v = }(;xEv + ;yfv + ;zGv )

(2.83)

Where the viscous shear stress terms are given as:

2 g [2(_xU _+
"r,xx = _ R e L rl xUrl

({zW_+ rlzWn+ ;zW;)]

+ _xU_)-(_yV_ + rlyV n + _yV_)-

(2.84)

2 g [2(_yV_ + + _yV_)-(_xU _ -!"
T,yy -- 3ReL rlyVrl rlxUr I

({zW_+ rlzWn + ;zw;)l

+_xW_) -
(2.85)

_2g
"Czz- 5Re---L[2(_zW{ + nzwn + _zW;)-(_x"_ + nx"n

(_yV_ + rlyVn + _yV_)l

+;_w;)-
(2.86)

_xy = R@L(_YU_ + qyUq + _yU_ + _xV_ + 'rlxV, q + _xV_)
(2.87)

,Cxz= R-_-L(_zu_+ nzUn + _zu; + _xW_+ nxWn + _xW;)
(2.88)

,r,yz = g@L(_ZV _ + nzVn+ _zV;+ _yW_ + rlyWrl + _y W_)
(2.89)
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Also, the heat flux terms aregiven by:

qx = ('y-1)_2_ReLPr (¢xTCM- + rlxTrl + CxT¢)
(2.90)

qY = _t (_yT¢ + qyTq + ¢yT¢)

('/- 1)M2_ReLPr

(2.91)

qz

_t

(y - 1)M2ooReLPr

(_zT_ + rlzTrl + _zT_) (2.92)
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Thin Layer Approximation

In order to adequately resolve viscous gradients due to solid surfaces, many grid

points must be clustered in these regions. For flows in which separation is minimal, gra-

dients of the stress terms normal to viscous surfaces have been found to be much larger

than gradients parallel to these surfaces [10]. Therefore, it is unnecessary to construct

grids with fine resolutions in directions parallel to viscous surfaces. To expand on this

analysis we must include computer requirements and limitations. Since a large amount

of computer time and storage is used in resolving these gradients, any valid reduction in

the full Navier-Stokes equations would greatly increase the efficiency and productivity

of the researcher. It has been shown that if the grid spacing parallel to viscous surfaces is

too coarse, and that the full Navier-Stokes equations are being solved, the resulting solu-

tion indicates that viscous gradients in these directions have not been fully resolved

[2,10]. It then only makes sense to drop the viscous terms in which partial derivatives

have been take with respect to directions parallel to viscous surfaces. As mentioned

before, after the governing equations have been transformed, it is a common practice to

have the viscous direction to be the Zeta direction. Therefore, any of the viscous flux

terms that contain partial derivatives with respect to Xi or Eta can be dropped since these

terms have been shown to be much smaller than those terms that have partial deriva-

tives with respect to Zeta. Returning to Equation (2.80), we can now drastically reduce

the viscous flux terms by dropping all terms with derivatives take in respect to Xi and

Eta. The resulting equation is:

ao+a ap ae,
a-7  --ee VRa (2.93)
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Where _ is defined as (Appendix F):

1

0

2 1

2 1

2 1
_t(_2+ _2,.+ g_)w; + ]_G{Gu; + Q,; + {._,,;)

2 .2 .2.1- f3U 2 31,2 _W2"_ aTq 1 f. o3u . t)v aw)
. + + +_:_)(G,, +

(2.94)

Page 23



CHAPTER 3

Volume Extension

The idea behind volume extension is to extend patched grids so as to create an over-

lapping region between grid zones. The overlapping region is required in order for Peg-

sus as well as OVERFLOW to work correctly. There are several reason for investigating

this approach. First, if this method of creating an overlapping region works and with lit-

tle user input, it would alleviate any need to modify PEGSUS and OVERFLOW. This

would be the major reason. Secondly, many researchers create patched grids for use in

their own flow-solvers. Often, these researchers require validation of their results using

other flow-solvers, such as OVERFLOW, that use the overset grid technology. Instead of

completely remodelling the configuration, the existing patched grids could be trans-

formed into overset grids. As will be shown, the program developed, "patched-2-over-

set", was not as successful as hoped.

At this point it is a good idea to explain how grids are setup and how the relationship

between the physical plane and computational plane are determined. As previously dis-

cussed, the physical plane is in x, y, and z coordinates in space and the computational

space is in Xi, Eta, and Zeta coordinates. These Xi, Eta, and Zeta coordinates are most

often indexed using J, K, and L indices. Constant Xi planes all have the same J index.

The same is true for the Eta and Zeta planes both having constant K and L indices. The

indices are integers starting at one and running to however many grid points are in that

specific direction. Figure 3.1 demonstrates this idea.

For the program to work successfully, the user needs to identify several features of
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the grid to beextended. But first, someassumptions will be made. The program

assumesthat the boundaries of the interface will match up perfectly with the donor side

patched grid boundary. The computational indices do not necessarilyhave to be the

same,but the physical boundaries of the interface need to match up. This assumption

was made since the test caseof the ONERA M6 wing had this feature. In fact, this test

casewas actually asingle grid asshown in Figure 3.2. It was then chopped into four sep-

aratezones,thus creating twelve, meshcontinuous, patched interfaces asshown in Fig-

ure 3.3. However, this assumption would rarely exist for complex geometrieswhere

patched interfaces may have severalgrids asdonor interfaces.

The user then needsto provide information to the program in order for it to under-

stand where in the computation spacethe interface exist. This includes which grid the

interface exist in. Also, the J,K, and L index ranges that define where in the computa-

tional spacethe interface lies. As one will assume,the interface will always be either on

a J=l, J=Jmax,K=I, K=Kmax, L=I, or an L=Lmax plane. The next input is tell the pro-

gram where the donor side interface lies. This will requires providing the same infor-

mation as previously given to the program for the recipient side interface. To help

reduce user input, it was assumedthat the reciprocal is true. When the donor side inter-

faceis provided, it is assumedthat it will bea future recipient interface with its previous

recipient interface now becoming the donor interface.

Providing both interfaces is very important, the program usesthe donor grid inter-

face boundaries asa stencil on how to extend the recipient grid. It also usesthe plane of

points behind the donor interface asareferenceplane on how far to extend the recipient

grid and how the recipient grid will conform to the donor grids outer boundaries. Fig-
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ure 3.3demonstrates this idea in two-dimensions. However, it will be shown that this

may cause problems under certain circumstances. The user also has the option of how

many grid points to extend the grid. The grid is extended using the donor grids inter-

face plane and all subsequent planes behind the donor interface depending on how

many planes are added. Since the recipient grid is extended using the donor grid, the

user specifies a maximum stretching ratio, in returns the program alerts the user if the

stretching ratio is exceeded. Since there should be little stretching across the interface,

this alert should help the user in problem areas of the grid to be later refined. Table 3.1

summarizes the user required inputs as the program is executed.

The test case chosen for this research is the ONERA M6 wing as previously shown in

Figure 3.3. Table 3.2 details the grid system information. For this test case, we will dem-

onstrate the use of the extension program on one of the patched surfaces. It will be

shown that all twelve interfaces will have similar results. For this demonstration, the K

maximum patched surface on zone three will be extended one grid plane using the

donor grid for interpolation. As Figure 3.4 shows, the K maximum interface is also on

the same physical plane as another patched interface of zone three, the ] minimum sur-

face. The same is true for the donor grid, zone two. The K maximum surface of the

recipient grid matches up with the K maximum surface of zone two. Also, the ] mini-

mum surface of zone three matches up with the ] maximum surface of zone two. Let's

now concentrate on the K maximum surface of zone three, our demonstration surface.

However, all four surfaces just mentioned will in one way or another affect this surface,

and will lead up to one of the setbacks of volume extension. Instead of trying to visual-

ize this extension in the physical plane, it will be much easier to show in the computa-
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tional space. Referring to Figure 3.5,the K maximum surface and the J minimum

surfaces are shown. This surface will now be extended as shown in Figure 3.6. The

extended plane is shown in red. This will now add one more dimensional grid point for

the K direction. Disregard for now using the donor grid for the distance and placement

of this extended surface. Remember that this was a single grid and was split at symme-

try planes, so using the recipient grid for an extension direction and distance will have

the same effect as using the donor grid. Now, lets extend the J minimum surface without

extending the new K maximum plane. Figure 3.7 shows the results to this with the new

J minimum plane in blue. As a result of extending the K maximum, an extra point has

been added. As shown in Figure 3.7, the green dots are the result of extending the first K

maximum plane and the second J minimum plane. The end result is a series of new cells

at the corner of the computational grid. This is fine for the computational space since the

angle alpha between the new K maximum plane and the new ] minimum plane is ninety

degrees. However, referring back to Figure 3.5, both the K maximum plane and J mini-

mum plane are all on the same physical plane. This will make the angle alpha zero

degrees, and as a result the new set of grid cells at the corner of the computational plane

will collapse on themselves in the physical plane. An undesirable result that creates zero

and negative cell volumes.

It just happens that all twelve patched surfaces in the test case have this feature.

There are several options to further investigate. The other option available in this pro-

gram is to use the recipient grid to extend the patched interface. That is use the plane

behind the patched interface and the interface itself to linearly extrapolate a plane. As

stated earlier, the four zones were created at symmetry planes and as a result, the two
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options created in theprogram will have the sameeffect. Another option is to extend the

interface normal to the patched surface. This again will have the sameeffectas before

with corner point B being coincident with points A and C asshown in Figure 3.7. The

last option used was to go aheadwith the original grid extensionand force the angle

alpha to besomething other than zero degrees. This will force all the points beneath

points A and C to spread outward from the points beneath point B. In the end this

worked fine and the grids were run through Pegsuswith no problems.

This test caseis rare in that all the patched interfaces had this feature. For the most

part, this program could handle most real world complex geometries modeled using

patched grids. However, most often, a patched interface will not bean entire computa-

tional plane. Usually the patched surfacewill bea subsetof a computational plane with

boundary conditions applied to the remaining points on the surface. This will create

problems later on for the useroncethe entire plane is extended. Theextended portion of

the plane that had boundary conditions will now have to be cut out during the Pegsus

procedure. This may bea terribly time consuming task if for say the test casehaseighty

patched grids with a good portion of them needing hole cuts due to the grid extension.

Also to consider,even if extending patched grids to createan oversetgrid system will

still leavethe interfaces unconservative. Due to the outcome of this investigation, and

the reality of having further problems with grid extension, it was decided to continue in

another direction. The results for this test casewill be presented later in Chapter Six.
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CHAFFER 4

Pegsus Modifications

As mentioned earlier, in order to model real world complex geometries, multiple

grids must be created that model specific regions of the flow field accurately. This proce-

dure of domain decomposition is called the chimera grid approach [11]. Since the main

purpose of the flow-solver, OVERFLOW in this case, is to numerically solve the govern-

ing equations, a separate preprocessing program is required to provide information to

OVERFLOW on how each grid will pass flow-field information between themselves.

For OVERFLOW, the program Pegsus is used to provide grid communication informa-

tion for overlapping grids. Pegsus is also used to cut holes in grids in areas that may

cause interference with other grids such as overlapping solid surfaces.

The basic procedure for a researcher to apply the chimera grid approach is to first

model the flow-field using multiple overlapping grids (Figure 1.3). Next, the user pro-

vides Pegsus with these separate grids and an input file that provides all necessary infor-

mation on which outer boundaries on each grid will require Pegsus to compute valid

stencils. A valid stencil is a when Pegsus has determined that a point lies within a donor

grid cell and that the three required interpolation coefficients are between zero and one.

For grids requiring hole cuts, the user specifies surfaces in one grid that will make a hole

in another grid. Pegsus will then determine how to cut the hole and which fringe points

on the hole will require interpolation stencils. Pegsus in returns creates a single multiple

grid file containing all grids and an interpolation file [11].

For this research, the process in which Pegsus goes about searching for valid stencils
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and creating hole cuts will not bediscussed in detail but rather how to modify Pegsusto

handle patched grids. In fact, hole cutting is not required for patched grids since there

arenot overlapping regions.

First there is the issueof the interface itself. For grids of varying resolution or non

point-matched grids, the interface is not exactly a cleansmooth curve where there areno

gaps or overlapping. For most casesthere exist smalls gaps in someregions and small

overlaps in others asdemonstrated in Figure 4.1. The interface points that overlap the

donor grid and thosepoints very closeto the donor grid, Pegsuswill have little trouble

finding valid stencils. It is difficult to determine what is a very close point in terms of a

specific distance. It will vary from run to run and the grid resolutions involved in each

run. One of the inputs to Pegsus is for the user to determine and supply a parameter,

epsilon, that will allow Pegsus to label a stencil as valid depending on how far that point

may lie outside of a donor grid cell [11]. This will result in interpolation coefficients out-

side the range of zero and one or that the point lies outside the donor cell by some small

amount. For the points outside the domain of the donor grid, Pegsus will have trouble

finding stencils. For these points to receive the appropriate interpolation coefficients,

they must be projected onto the surface of the donor grid. The projection will not be per-

manent, it will only provide a physical coordinate to compute the interpolation coeffi-

cients. This projection requirement will be one of the modifications to Pegsus. A search

routine will also be needed to find out where on the donor grid interface the projection

will occur.

With both the projection and search routines added, some other features will be

added to speed up the search and add functionality for the patched grid option to Peg-
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sus. Table 4.1summarizes theseadditions.

The first entry in Table 4.1 is the patched grid option. This option, specified in the

input file provided by the user,enablesthe new searchand projection subroutines. This

option is only enabled if a point is labelled by Pegsusasan 'Orphan Point'. An orphan

point is a point that Pegsuscould not find a valid stencil for. Once a point is labelled an

orphan point, the new searchroutine begins.

The reasonfor the new searchroutine is to find the donor grid cell that the recipient

point lies within or has the possibility of being projected onto in order for interpolation

coefficients to becalculated. The first step of the searchis to find the closestpoint in the

donor grid to the recipient point. This donor test point will be the starting point of the

next search. The next searchprocedure is aclipping test. This test determines if the

recipient point hasthe possibility of falling within a two by two cell face areaof the

donor grid with the donor testpoint just found asthe centerpoint. This is achieved by

first determining the minimum and maximum x, y,and z values of all nine points that

make up the two by two cell facesof the test region of the donor grid. With thesemini-

mum and maximum x, y, and z values, the clipping test is passed if any of the x, y, or z

components of the recipient point lie within the minimum and maximum ranges of the

donor test region. The clipping test is rather fast and reduces the number of regions in

the donor grid for the next search procedure to test in. The clipping test is demonstrated

in Figure 4.2. If the test fails, the search continues in a radial direction from the initial

test point. Once the clipping test is passed, the next test procedure is executed.

The final search procedure is a triangle test. That is, the recipient point is projected

onto the plane of the two by two cell face area using the center point as a reference point.
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Even if the four cell facesare not on one distinguishable plane, the centerpoint will be

common to all four planesand is used to project the recipient point the proper distance.

Once the point is projected, a triangle test is implemented. This test consist of calculat-

ing four triangular areas and making a comparison. Referring to Figure 4.3, point R, the

recipient point, is projected onto the donor grid interface test region. The next step is to

calculate the area of triangle abc. This will be the base area. Next using the new coordi-

nate of point R after the projection, the areas of triangles abR, acR, and cbR are calcu-

lated. If the sum of these component areas sum up and equal to the base area, the search

is over and the grid cell in the donor grid has been found. If not, the triangle test contin-

ues for this test region. If all eight possible triangle tests fail, the search continues on

with the clipping test again. Once the triangle test has passed, the donor cell and pro-

jected point R are passed back to the main search of Pegsus and interpolation coefficients

are calculated. To help speed up future searches of orphan points passed to the projec-

tion subroutines, the previous stencil is stored. Instead of calculating the closest point in

the donor grid, the stored stencil is used as a starting point. Calculating the closest point

in the donor grid is CPU intensive, avoiding having to use it drastically speeds up the

search. Since orphan points tend to be confined or clustered to specific regions of the

grid, storing previous stencils most often reduces calling the closest point search to only

two or three times depending on grid topology.

The next option in Table 4.1 is the DGRID option. The user is responsible for provid-

ing Pegsus a set of possible donor grids. For patched grids, usually only a subset of

these grids are possible donor grids for one interface and the remaining subsets are pos-

sible donor grids for the other interfaces of the recipient grid. The criteria Pegsus uses
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for a recipient point to even start a stencil search in a donor grid is if the points lies

within the min/max box of that donor grid. However, in some cases and especially with

patched grids, the recipient point may be in the min/max box of the donor grid but may

not be its true donor grid. Therefore, the DGRID parameter is an option to further subset

the user provided donor grid list for each of the interfaces on the recipient grid in ques-

tion. This has shown to improve speed of execution in most cases. This is because once

Pegsus has started its search and the point will require projection, Pegsus will continue

the search over a great deal of the donor grid until it labels it an orphan point. This is

costly and can be avoided if the user uses the DGRID option.

The third entry in Table 4.1 is the PROGRD option. PROGRD is a separate program

to Pegsus and is used to project subsets of a recipient grid onto a reference plane of a

donor grid [13]. This is primarily used in the viscous regions of grids that have varying

resolution and there exist a mismatch as to were the solid surface is modeled. Referring

to Figure 4.4, both the red and blue grids accurately model the cylinder. All surface

points lie on the solid surface of the cylinder, however since the two grids have varying

resolutions there exist a mismatch in the boundary layer of these two grids. Referring to

the blue grid and line A, the point on the solid surface is actually within the boundary

layer of the red grid. If these were two patched interfaces, the flow-field information

being passed back and forth between the red and blue grids, in the sensitive region of the

boundary layer, would be incorrect and will cause discontinuities in the flow. To fix this

problem, PROGRD will project the points in line A on the blue grid onto the solid sur-

face characterized by the red grid. The PROGRD option, if specified, will read in the

resulting projected grid from PROGRD as the set of physical coordinates used to find
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stencils in PEGSUS.However, the original grid is used in the flow-solver since it accu-

rately models the geometry.

The fourth entry in Table 4.1 is the METHOD option. This will tell Pegsus were to

store the weights for the patched grids interface points. This will allow OVERFLOW to

distinguish between the two methods used to update interface points. As mentioned

earlier, the two methods used to update the interface points are the flow-through bound-

ary condition and the cell-vertex finite volume method. Since the flow-through bound-

ary condition only uses the first interior points behind the donor grid interface for flow-

field information, it was decided to make the interpolation coefficients indicate that all

the weight is on the interior plane. This will require making one of the weights zero or

one. Depending on what computation plane the interface lies on, one of the weights will

either be zero or one. For example if the interface is on the J maximum plane, the J

weight will be zero, thus indicating no weight on the J maximum surface. Since the

interface is two-dimensional, the weight being set to zero or one is in the third direction

which has no effect on computing the final weights which are dependent only on the

remaining two weights. The opposite is made for the cell-vertex method. One of the

three interpolation coefficients will be set to zero or one indicating the remaining two

weights are on the interface. For the previous example, the J weight will be set to one

placing full weight on the interface. When OVERFLOW reads in the weights and the

stencil, it will be able to differentiate between the two methods depending on where the

weights are.

The last entry in the Table 4.1 is for the coincidence check. For the example of the

ONERA M6 wing, the patched grids are mesh continuous. That is, the grid points line
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up, or are coincident with the donor grid interface points and vice versa. When the coin-

cidence check is enabled Pegsus will check for coincidence with the donor side test

point. This is a fairly easy task of comparing physical coordinates and is the first test in

the search procedure. If the user knows that the patched grids are mesh continuous,

enabling this option will speed up execution tremendously.

The modifications to Pegsus were straight forward. The bulk of the work was creat-

ing the new search and projection subroutines. The remaining options listed in Table 4.1

were consequences of debugging the program. Although the speed of the program has

decreased some what as compared to the original version, the resulting number of

orphan points is minimal, which is one of the goals for a patched interface.
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CHAPTER 5

OVERFLOW Modifications

OVERFLOW is a three-dimensional unsteady compressible thin-layer Navier-Stokes

flow-solver developed at NASA Ames Research Center. The development of OVER-

FLOW has been ongoing for many years and begun as a rewrite from two previous

NASA codes, the ARC3D and F3D codes. OVERFLOW has several options for right-

hand-side calculations [12]. These include central differencing, flux split in J (central in

K, L), Liou AUSM flux split scheme, and finally the Roe upwind scheme. Left-hand-side

options are the ARC3D 3-factor block tridiagonal scheme, F3D two-factor scheme,

ARC3D 3-factor diagonal scheme, and also the LU-SGS algorithm. Several turbulence

model options exist also. These include the Baldwin-Lomax, Spalart-Allmaras models

and the k - e turbulence model. For this research, the right-hand-side calculations will

be limited to central differencing and the ARC3D 3-factor diagonal scheme for the left-

hand-side [13].

The first modification to OVERFLOW was to include the flow-through boundary

condition. This was included since it is a simple modification to the program and was

used to quickly debug problems in the modifications to Pegsus. Although the flow-

through boundary condition is one solution to including the patch grid capability in

OVERFLOW, it will prove to be unconservative. The goal is to include a patched grid

capability with the option of further enhancing this method to be fully conservative. The

flow-through boundary will not be capable of being modified to be fully conservative.

The initial results were very promising, proving that the modifications made to Pegsus
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for patched grids were working. Also, the results of the ONERA M6 wing showed that

the flow-through boundary condition worked well with very little flow-field discontinu-

ities at the interface. This test casedid not place patchesnear any known flow-field dis-

continuities such asshocks. Later test cases,with patched interfaces placed at a shock

location on the top of the wing, showed that this method would not allow the shock to

properly pass through the interface.

The next modification to OVERFLOW isto include acell-vertex finite volume scheme

for the interface points. This method has the further capability of being fully conserva-

tive. With the interior schemebeing a finite difference method, including the cell-vertex

finite volume method took careful planning and consideration to allow both methods to

work together. Both right-hand-side central differencing and the left-hand-side ADI

operator were implemented in several steps. This method proved to be unstable for cer-

tain test casesinvolving an initial garbagesolution. The initial garbagesolution tests to

verify if the garbage input would passthrough the interface cleanly and wash out the

exit plane. The ONERA M6 wing test did not work at all. Severepressureoscillations

occurred immediately aheadof the leading edge of the wing. Further investigation of

the cell-vertex method is needed to stabilize the scheme.
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Flow-Through Boundary Condition

The flow-through boundary condition works very similar as the C-grid boundary

condition [12]. The C-grid boundary condition is applied to a plane of coincident points

in the region of a C-grid that folds over onto itself. Figure 5.1 demonstrates a C-grid

modeling a cylinder. The wake region of the C-grid is were the C-grid boundary condi-

tion is applied. The update of the boundary points using this boundary condition

requires using flow-field information from interior points on both sides of the C-mesh

region. The only requirement is that the points at the boundary must be coincident with

its corresponding point at the other end of the C-mesh region as demonstrated in Figure

5.2. In Figure 5.2, the C-grid boundary condition is applied to the J values of one to

twenty-three. It is automatically assumed the corresponding coincident points, denoted

by a negative sign, will have the same requirement. Figure 5.3 demonstrates how to

update the boundary points. For the example, point thirteen is updated using the one-

half the value of the first interior point behind point thirteen, point Q (13,2), plus one-half

the value of the first interior point behind its corresponding coincident point, point Q(-

13,2). The same will be true when updating point Q(-13), it will have the same value as

its corresponding coincident point, point Q(13). All the points in the C-mesh with the

boundary condition will be updated after all the interior points have been updated.

To apply this concept to a patched grid is very similar. For the C-grid boundary con-

dition, the user specifies only one side of the range of points it is to be applied to. The

corresponding coincident points are easily obtained since they are in the same grid and

will also take on the boundary condition. For a patched grid, Pegsus will provide all the

necessary information on how to identify the donor grid information. This will include
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providing a pointer and three interpolation coefficients. The pointer identifies the donor

grid number and the J, K, and L index location inside that grid as to what cell will pro-

vide the donor side flow-field information. The pointer indices are the minimum index

of the donor grid cell in each direction (Figure 5.4). Figure 5.4 demonstrates how to the

recipient point is updated. Pegsus provides the pointer and the three weights which can

be used to calculate all the weights for each of the node values for the cell. The recipient

side contribution to the update is one-half of Ql. Where Q1 is the first interior point

behind the interface. The donor side information will be one-half of the sum of several

weighted Q values. As stated earlier, the weights on the interface points, weights one

and four, are forced to be zero during the Pegsus process in order for OVERFLOW to

distinguish the method.

The modification to OVERFLOW was straight forward. Referring to Figure 5.4, if

point QR was an overset point, its update would take on the following formula.

QR = {°)lQ1 + 6°2Q2 +_3Q3 + °)4Q4} (5.1)

The update using the overset method does not using any flow-field information from the

recipient grid. For the recipient patched interface points, the donor side information has

been satisfied already since weights one and four are set to zero. All that is needed is to

add the recipient side Q value and divide the total update by two. Therefore, as the chi-

mera subroutines are iterating over all the outer boundary points, the recipient side Q

value is added and the total Q value is then divided by two.

To allow for both overset and patched grids was also a straight forward task to incor-

porate into OVERFLOW. Pegsus was further modified to insure that patched interface
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points will always have at leastone of the interpolation coefficients set to zero or one

(only two coefficients areneeded, interface is two-dimensional). Then, to distinguish

between the patched interface points, the oversetpoints will always have values

between zero and one. If by chancePegsusfound a stencil that had an interpolation

coefficient value of zeroor one, a check is made that will add or subtract asmall delta

value. This will have little effect on the solution but will help OVERFLOW distinguish

between the two methods.
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Table 3.1:

Patched-2-Overset Input Questions

Enter the number of patched grids in system.

Patched-2-Overset Required Inputs

Iterations

a=N

Enter the number of patched surfaces for grid (a). b=l ..M

Enter the J, K, and L indices for patch (b) of grid (a)

Type of Interpolation for patch (b) of grid (a):

l=straight extrapolation follow grid lines of recipient grid. 1 or 2

2=straight interpolation, follow grid lines of donor grid.

Number of additional planes for patch (b) of grid (a). 1, 2, 3 .....

Enter the number of the donor grid. c=N'

Enter the J, K, and L indices for donor patch (c) for grid (a) and

recipient patch (b).

Table 3.2: Four Zone ONERA M6 Wing Summary

ONERA M6 Wing: Four Zone, Mesh

Continuous Grid System
I i

Zone One: 49x25x33 grid points
I i

Lower downstream grid

Patched Surface J--1,48 K=2,24 L=33,33

Patched Surface J=1,48 K=25,25 L=2,33

Patched Surface J= 1,1 K=2,25 L=2,33

Zone Two: 73x33x49 grid points Lower wing grid

Patched Surface J= 1,1 K=2,33 L=2,48

Patched Surface J=73,73 K=2,33 L=2,48

Patched Surface J=1,72 K=33,33 L=2,48

Wing Surface

Zone Three: 73x33x49 grid points

Patched Surface

Patched Surface

J=1,73 K=2,33 L=I,1

Upper wing grid

J-- 1,1 K=2,33 L=2,48

J=73,73 K=2,33 L=2,48
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Table 3.2:

ONERA M6 Wing: Four Zone, Mesh

Continuous Grid System

Four Zone ONERA M6 Wing Summary

Patched Surface J=1,72 K=33,33 L=2,48

Wing Surface J=1,73 K=2,33 L=I,1

Zone Four: 49x25x33 grid points _ Upper downstream grid

Patched Surface J-- 1,48 K=2,24 L=33,33

Patched Surface J-- 1,48 K= 1,1 L=2,33

Patched Surface J= 1,1 K=1,24 L=2,33
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Table 4.1: PegsusModifications Summary

PegsusModifications Description Option

TYPE = 'Patched' The 'Patched' option will enable the new Required

or search and projection subroutines
TYPE = 'Overset'

DGRID='donor grid #' This will further subset the donor grids. Optional

Will only search those grids specified

PROGRD = 'progrd name' Optional

METHOD = 'Flow-through'

or

METHOD = 'Cell-vertex'

COINCK = 'TRUE'

or

COINCK = 'FALSE'

This option will read in grids that result

from the program PROGRD. Stencils now

will use the physical coordinates from the

progrd grid for stencil searches, but retain

the original grid for the flow-solver.

This option will determine where interpola-

tion weights will be stored. This will help

OVERFLOW distinguish between the two

interface methods, the flow-through bound-

ary condition and the cell-vertex method..

This option will enable or disable the coin-

cident point check option. Program execu-

tion speeds up with this option enabled for

mesh continuous grids.

Required

Optional
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Figure 1.1 Unstructured surface grid on aircraft geometry

Figure 1.2 Structured surface grid on aircraft geometry
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i!

Figure 1.3 Structured overset grid, with hole cuts,

of a wing-body geometry
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z _ - _(x, y, z, t)

____y q = Tl(x, y, Z, t)

x _ ¢ = ¢(x, y, Z, t)

---_ ri

Physical Space

¢

Computation Space

Figure 2.1 Generalized transformation between the

physical and computational domains
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L

t J=4

lI" L=I

j _ 5 Computational

Space

Physical Space 11

Figure 3.1 Computational space indices relative to physical space indices

Figure 3.2 ONERA M6 wing, single zone, 269x35x67 grid points
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Zone 4 Zone 3

Y

Zone 1 ZOlle 2

Figure 3.3 ONERA M6 wing, four zone patched grid system

Z

Figure 3.4 ONERA M6 wing, twelve patched interfaces
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Figure 3.5 Zone three, patched interface at the K maximum surface

and the J minimum surface
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Figure 3.6 Zone three, extending the K maximum surface
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Figure 3.7 Zone three, extension of K maximum surface

and ] minimum surface
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_ Grid 1

2

° •

Figure 4.1 Patched grid interface characteristics

Y
A

Recipient Grid Point _ x

Ymax

r •
,mln

Ymin

Point passes Ymin/Ymax test
Point fails Xmin/Xmax test

Point passes Zmin/Zmax test

_(max

\
Xmin

\

Z

Recipient Grid Point _ x

Zmax _

Xmax

Donor Grid

Figure 4.2 Clipping test example
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_ Donor Grid

//_/ _/ donor test po|nt

Recipient Grid Point

a

Figure 4.3 Triangle test example

B

A

Cylinder

Figure 4.4 PROGRD example
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Figure 5.1 C-grid modelling a cylinder

:m x
J=2

J=23 J=l

Coincident Points=> (1,Jmax), (2,-2) ........ (23,-23)

Figure 5.2 C-grid requirements
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Q(-13, 2)

a(-13) _ / "

" _'Q(_3_ "
Q( 13, 2)_

J=Jmax

J=-2

J=2
J=l

Q(13) =

Q(-13) =

1
_{Q(13, 2) + Q(-13, 2) }

Q(13)

Coincident Points=> (1 ,Jmax), (2,-2) ........ (23,-23)

Figure 5.3 C-grid boudary condition formula

QR =

031 =

1 1

"_Q5 + _{ m2Q2 + °3Q3 }

0,)4=0

J=l
L=3(

.I=2
J=3

Donor

Grid

L=2

J=4

J=5

J=7

L=I

Interface

Figure 5.4

Pointer

QR

Recipient (0 Weight
Grid

Q Solution

5

Patched grid interface with flow-through condition
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APPENDIX A

Derivation of the Continuity Equation

control
volume

Z

X

9vdxdz

9 wdxdy + i)(9 w_______)dxdydz

9ud_ ovdxdz + _y ) dxdzdy

9 wdxdy

Figure A. 1 Differential fluid element with mass flow rate quantities

prescribed for each of the elements six faces

The Conservation of Mass law basically states that mass cannot be created nor

destroyed. We can demonstrate this by creating a control volume of arbritrary size in

three dimensions as illustrated above in Figure A. 1. Then using the conservation of

mass law, we can say that the rate of change of mass within the control volume must be

equal to the net rate of inflow of mass, or in equation form we have:

/)m
--_ - mente r- mexiting

(A.1)

Substituting the mass flow rates for each direction, as illustrated in Figure A. 1, we
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then have:

I(pudzdY)enter-(pudydz + O(P-ff--U)dydzdx) 7 +
ox lexit-Jxdirection

I(pvdxdz)enter-(pvdxdz+_(_-ff--V)dxdzdyl l +
ay YexitJydirection

E(pwdxdY)enter-(pwdxdy+_(_W)dxdydzl ]
oz YexitJzdirection

_(p )dxdydZvolumemass

at

(A.2)

Further reducing we have:

_[O(p u)dxdydzl _ [O(pv)dxdydzl -

L ax dxdirection L oxy lydirection

O(P-_--W)dxdydz ] FO(P ) dxdydz]
OZ Jzdirection = L--_ dvolumemass

(A.3)

Finally, with further reduction we get equation (2.1)"

O(pv) O(pw)Op O(pu) + +
Ot + Ox Oy Oz

-0 (A.4)
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APPENDIX B

Derivation of the Momentum Equations

(pvdxdz)u _(pv)udXdZdv
+ by

(pvdxdz)u

3(pu)dydZUdx
(pudydz)u + Ox

O("_,:y)dxdz

"txydxdz + _y
dy

Y _

X Oxdydz dy _xdydz + 3x

dx

I _ "rxydxdz

_)(pw)dxdyu
(pwdxdy)u + Oz dz

_ _(pu )dvdzu,t

(pudydz)u dz pudvdz)u + Ox" "

O('_,_.)dXdY d,"
dx _x dxdy + " "

z Oz

(pwdxdy)u Z t_ dydz dz t_dydz + Ox--"---':_"

X _
"Cxzdxdy

* Redundant Information

Figure B. 1 Differential fluid elements with force quantities

prescribed for the x direction only

The Conservation of Momentum law, otherwise known as Newton's Second Law,

will now be applied to a fluid element. Newton's Second Law states that the rate of

change of momentum plus the net inflow of momentum within a control volume is

equal to the net force on the control volume. For this derivation, we will only consider

the x-direction. A similar analysis can easily be applied to the y and z directions. We

will also only consider laminar flow.
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Therefore, the momentum equation for the x-direction can be written as:

M)°ut + (M)in + "_i _Ix Flx
(B.1)

Further expansion of the right hand side leads to the following:

_ tE + +
M)°ut-(M)in + "_ _Ix Fsurface pressure

For our analysis, we will neglect any body forces which include terms such as forces due

to gravity. It then follows after substituting the values shown in Figure B. 1, the momen-

tum equation applied to a fluid particle is:

O(pv )dxdZU dy a(pw )dxdyU dz(pvdxdz)u + + (pwdxdy)u + +Oy az

O(pu )dydZU Ax] - [ (pudydz)u + (pvdxdz)u + (pwdxdy )u](pudydz)u + ax
+

_(_,)dydz _('Cxy) dxdz_(pu) _ _xdydz + dx +'Cxydxdz + dy +
_t i)x _y

O('Cxz)dxdy . q

"cxzdxdy + --az dzJ - [axdydz + "Cxydxdz + "Cxzdxdy]

(B.3)

Further reducing we have:

a( p u )dydZU dx a(pw)dxdyUdz 3(pu)+ a(pv)dxdZUdy + +
ax ay az at

a(Cx)dydz a(Xxy)dxdz a("Cxz)dxdy .
dx + dy + dz

ax ay _z

We can further reduce the previous equation and rearrange it to get:

a(pu 2) a(puw) _(puv) at_x O'_xy aTxza(pu) + + + = + +__
at ax az ay _ _ az

With the following relationship we can rearrange equation (B.5):

Ox = - P + "Cxx

(B.4)

(B.5)

(B.6)
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With this last relationship, we cannow show that equation B.5 is the sameas equation

(2.2):

_(OUV) _(OUW) _Txx _T'xy O'_xz
/)(pu) + 0(pu- + p) + + - + + -- (B.7)

_)t /)x _)y /)z _x _ /)z

Furthermore, it can be similarly shown that for the y and z directions, the following two

equations exist respectively:

0(OV) if"_(OUV) -b0(pV2 + p) "l-_(OVW) OTxv O_yy OTyz
/)t 0X /)y 0Z = _9----_"+ _ + /)Z

(B.8)

/)(pw) +/)(puw) + _)(9vw) + b(pw 2 + p) _ _)'Cxz+ _Xvz + _'Czz__
_)t /)x /)y /)z -_x _ /)z

(B.9)
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APPENDIX C

Derivation of the Energy Equation

Y

net flux Z_
of heat into X
element

O(qx)dydz
dx

ax

Y
4x

rate of work I

X

"_xyudxdz +

updydz _dy
_xxudydz dx

b('c xru )dxdz

Oy ,dy

updydz+_dx

O(x_u)dvdz

xxudydz+ _x _ dx

_xyudxdz

i_('_.xu )dxdv
' " dz

"_:xudxdy + 3z

z

k _ upaydz _ ] _,, , . 2(up)dvdz,

upayaz + "_}t ' ax

rate of wor _/Y x ___ dy dx /| 3( z _-_3._u)d rdz
"t udydz I t-l_'r_udrdz + " dx

i

* Redundant Information
x:xudxdy

Figure C. 1 Differential fluid elements with energy quantities

prescribed for the x direction only

The Energy Equation is derived from the first law of thermodynamics. Applying this

law to a fluid element as shown above in Figure C. 1,, the law states that the rate of

change of energy inside the differential element is equal the net flux of heat into the ele-

ment plus the rate of work done on element due to pressure and stress forces on the ele-

ment surface.
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In equation form this is simply:

Where E t is the total energy,

DE t

Dt - qnet- W (C.1)

q is the rate of volumetric heat addition into the element

and finally, W is the rate of work done on the element. As with prior derivations, body

forces such as those resulting from gravity will be neglected. Beginning with the left-

hand-side of equation (C. 1), the rate of change of energy within the fluid element is the

substantial derivative of the total Energy, E t . Expanding this term out we get the follow-

ing:

DE t OE t O(Etu) O(Etv) O(Etw)
- + _ + _ + (C.2)

Dt Ot Ox by Oz

We will now move onto the first term on the right-hand-side of equation (C. 1). This term

represents the net flux of heat into the element. Referring to Figure C. 1, we will add the

appropriate terms to this element. For our discussion, the figure represent only the x-

direction. A similar analysis can be done for the y and z directions. The net flux is then

written as:

Further reducing:

O(qx)dydz "x

[q]net = qx dydz - (qx dydz + "_x dx)
(c.3)

Oqx

[q]net - t)x (C.4)
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Adding in the y and z directions we finally get:

aqx 3qy 3qz (C.5)
[q]net = 3x 3y 3z

The last term on the right-hand-side of equation (C. 1) is the rate of work done on the dif-

ferential element. Again, referring to Figure C. 1, we will again make the appropriate

substitutions. This term can be written as:

W= [updydz-(updydz + 3(uP)_-xdxYdZdx)] +

3(Xxxu)dydz ,_ ,Cxxudydz ] +

+ dy)- +

(C.6)

Making further reductions in the above equation we get:

3(*xyU) 3(*zxU)W = 3(up) + 3('Cxxu) + + (c.7)
3x 3x 3y 3z

We will now add the y and z direction components to the above equation. The final form

of the rate of work term is:

3(_xx u) 3(_xyU) 3(_xzU)W = 3(up) + + +
3x 3x 3y 3z

3(vp) + 3(_xy v) + 3('r, yyV) + 3('r, yz v) (C.8)

3y 3x 3y 3z

3(wp) + 3(_xzW) + 3('r'yzW) + 3('r'zzW)
3z 3x 3y 3z
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We will now finally substitute equations (C.2), (C.5), (C.8) into equation (C. 1) and get:

3E t 3(Etu) 3(Etv) 3(Etw)
_+_ -t-_ +

3t 3x 3y 3y

3(up) + 3(XxxU) + 3('CxyU) + 3(_xzU)

3x 3x 3y 3z

3('r, xyV ) 3('r, yyV)3(vp) + +

3y 3x 3y

3('r, xz w) 3( _yz w)3(wp) + +

3z 3x 3y 3z

3qx 3qy 3qz

3x 3y 3z

+ 3(XYzV)

3z

3( zz w)
+

(C.9)

Rearranging this equation, we can now be shown that equations (2.11) and (C. 10) are the

same:

3E t 3((E t + p)u) 3((E t+ p)v) 3((E t + p)w)

3t 3x 3y 3z

3(u'r, xx + VXxy + WXxz - qx ) 3(U'Cxy + V'Cyy + W"Cy z - qy)
+ +

3x 3y
(C.lO)

3(UX xz + V'Cy z + WXzz - qz )

3z
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APPENDIX D

Nondimensional Form of the Navier-Stokes Equations

We will begin our analysis by first rewriting the governing equations. The following

are the continuity, momentum, and energy equations respectively from appendices A, B,

and C:

Op b(pu) 0(pv) +b(pw) _ 0
-_ + _x + c)y /)Z

(D.1)

/)(pu 2+p) /)(puv) _)(puw) _'Cxx _'Cxy _'Cxz
/)(pu) + + + - + +_ (D.2)

Ot /)x /)y /)Z /)x _ /)Z

t)(pv) + t)(puv) t)(pv 2 + p) + t)(pvw) _ t)'r'xy + t)_yy + _'YZ (D.3)
/)t /)x + 3y /)z t)x _ /)z

t)(p uw) _)(pvw) t)(Pw 2 +P) OXxz t)'r'yz t)'_zz
t)(pw) + + + - + + _ (D.4)

_t _x _y Oz _x -_y 3z

t)E t t)((E t + p)u) t)((E t + p)v) i)((E t + p)w)

_t _x _y _z

t)(U_xx + V_,xy + W'Cxz - qx ) t)(UT, xy
+

Ox Oy

+ VT,yy + W_y z - qy)
+

(D.5)

t)(UXxz + VXy z + w'r, zz - qz )

_z

We will now nondimensionalize these equations one at a time.
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The nondimensional variables will be the sameasthose in equation (2.21). They are:

x u P*
X* ---- -- U* = --

L V_

y* = Y v* = ! P*
L V_

z* = -z w* = __w T*
L V=

t* - t P* = _ e*
L/Vo_ p_

p

p_V_"

T

T_

e

Voo"

(D.6)

The asterisk terms are nondimensional. They can be rewritten to solve for the dimen-

sional variables.

x = x*L u = u*Vo_ P = P'P=

y = y*L v = v*V_o P = p*V2ooP _

z = z*L w = w*V_ T = T*T_o

t = t*(L/V_) P = P*P_ e = e*V2oo

(D.7)

Substituting the appropriate values from equation (D.6) into equation (D.1) we have:

0(p*poo) /)(p*poou*Voo) ig(p*poov*Voo) 3(p*poow*Voo)
+ + +

3(t*(L/Voo)) 3(x'L) O(y*L) _(z*L)

=0 (D.8)

The left -hand-side of equation (D.8) can be factored further.

PooVoo(a(p*) a(p*u*) +
T _,a-_+ ax*

=0 (D.9)

With further reduction, the resulting equation is:

a(p*) + O(p*u*) + a(p*v*) +
/)t* /)x* /)y*

-0 (D.10)

Page 68



Next, we will nondimensionalize the x direction of the momentum equations. Again, we

will substitute the appropriate values from equations (D.7). Wewill first begin with the

left-hand-side of equation (D.2):

O(p*p u*V )

3(t*(L/Voo))

3(p* p u* 2V2,_ + p* V 2p,_)

+

3(9 u*V v*V ) 3(p u*V w*V )
+ = LHS

3(y'L) 3(z'L)

4-

(D.11)

With further factorization, we get:

P_ _o 1(3(9"u*) +3(p'u* + p*) +3(u'v*)

)_. 3t* 3x* 3y* 3Z* )

Next, we will do the right-hand-side of equation (D.2). It follows then:

= LHS (D.12)

3'_* 01:* 31;*
RHS- xx + xy + xz

With further factorization, we get:

3(x'L) 3(y'L) 3(z'L)
(D.13)

RHS = ( l ")( 3"r,* x x 3"r,* x y 3'r, * x z "]

L)\ 3x* + 3y------;-+ 3z----*J

The nondimensional viscous stress tensors follow as:

(D.14)

2 , (3(u*V) 3(v*Voo ) 3(w*Voo)

"r,*xx = -_g g,,_[,2 3(x'L) 3(y'L) 3(z'L)

With further factorization, we get:

(D.15)

,r 3u* 3v* 3w* 
"r'* x x = _, -£ ) "_l't _ 2 -_x* 3 y"---£ 3 z * )

(D.16)
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Also,

xy

O(v*V)

+ _(x*L) J (D.17)

With further factorization, we get:

r_:v_ ,rau* av,]
_*xy-t _ J_ t_+a.,j (D.18)

Also,

(a(w*V ) a(u*V_) 1 (D.19)

With further factorization, we get:

xz t_x* /)z*
(D.20)

Substituting equations (D. 16), (D.18), and (D.20) into equation (D. 14) we get:

RHS = \LJ\ L J\ _x* + _y* + _z* )
(D.21)

If we divide both sides by _ we get:

c)(p* u .2 + p*) + t)(u*v*) + 2(u* w*)l+ _)x* _)y* _)Z*

= LHS (D.22)

RHS = (D.23)
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With further reduction and defining the Reynolds number as:

RE L =

PooVoo L
(D.24)

The x direction momentum equation follows as:

/)(p'u*) +/)(P*u .2+ P*) + O(u*v*) + i)(u*w*)

Ot* 3x* 3y* OZ*

( l____(t)T'*xx _T'*xy t)T,*xz _

RELJ\ Ox* + Oy* + _Z* J

(D.25)

With a similar analysis, it can be shown that the y and z directions respectively are:

/)(P'v*2+ P*) O(v*w*)b(p*v*) + b(p*uv) + +
t_t* t)x* /)y* OZ*

( l_..__(OT,*xy + t)T,*y).........__,+ _)T,*yz]

RELJ\ Ox* Oy* Oz* J

(D.26)

b(p*w*) +b(u*w*) +O(v*w*) +
2

/)(p'w* + p*)

Ot* Ox* Oy* OZ*

OZ*yz OZ*zz)
_+ 3y, + _ JRELJ\ Ox*

w

(D.27)
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Lastly, we will non dimensionalize the energy equation.

appropriate terms from the list of equations in (D.6).

Again, we will substitute the

OE* t O((E* t + p*p,,,V2oo)u*Voo)
+

O(t*(L/V )) ,9(x*L)

+

O((E* t + p*p,,oV2,,o)v*V,,_) _((E* t + p*p V2oo)w *V )
+

3( y* L ) O( z* L )

_(tt* VooZ*xx + v* VooZ*xy + w* V_'c* xz - q'x)

_( x* L )

+ (D.28)

t)( u* V _*xy + v* V,,, "C*yy + w* V oo'r,*yz
+

O(u* Voo'r,*xz + v* V x* + w* V X*zz - q'z)o,, yZ

Where

2 2 w 2)Et = p(e+U +v2 + (D.29)

Or in nondimensional form:

E* t
u*2V2°° + v*2V2°°2 + w*2V2°° 1

(D.30)
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Reducing, we get:

E* t = (pooV2,_)p*(e* + u*2 + v*2 + w*212 (D.31)

Also, from previous derivations, the nondimensional viscous stress tensors follow as:

= -3g t2-_x * Oy* Oz*l
(D.32)

YY = t "-£ )'3it tZ _y * OX* OZ* )
(D.33)

/it V "_2 ,f _)w* /)u* c)v*) *zz:t z ox, Oy*)
(D.34)

r_oovoo_,ra,,, au,)
T'* x Y : t "L )it t _y * + c)x * )

(D.35)

r_ooVoo_,raw* au,]_* :t_ J_t_ +xz _z* )
(D.36)

"C*YZ= t 7, )It t_Z*+Oy*) (D.37)

Lastly, the heat flux term in the x direction is given by:

kOT 7gR _T
qx = - -_x = (y--- i_Pr_x

(D.38)
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In nondimensional form we get:

7/-t* _¢_R 3(T'Too)
q* = (D.39)

x (T- 1)Pr _(x*L)

Rearranging we get:

1 _too "yRT,,ot,_T_..._*)q*
x = -L Pr (7 - 1 3x* (D.40)

It then follows the heat flux terms for the y and z directions are:

1/'too YR T /)T*
q* - (D.41)

Y LPr(7- 1)la* 3y*

q, 1 _,,_ 'yRT,,,, , 3T*
z = _,_rr( 7_ 1) l't

(D.42)

Next, we will substitute equations (D.31-D38) and equations (D.40-D.42) into equation

(D.28).
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With some factoring, this results in:

V 3 oo5 _)E* t

13oo

Ot*
+

V3oo • •

+

_( (E* t + p* )v* )

Oy*

+
( V3,,_]O((E*t + P*) w*)

Poo

Oz*

kt_oV2oo)_(u*'C*xx + v*'C*xy + w*Z*xz) Oq*x
L 2 Ox* _x*

+ (D.43)

g__V2oolO(u*_*xy + v*'C*yy + w*T,*y z) Oq*y +

L 2 ) OY* Oy*

g,,oV2oo]c)(u*_*xz + v*'r'*yz + w*X*zz) Oq*z

' --_ ) _z* ,gz*
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If we divide both sides by p®v3" and using the definition of the Reynolds number, equa-
-T-

tion (D.43) becomes:

_)E* t t)((E* t + p*)u*) t)((E* t + p*)v*) t)((E* t + p*)w*)
_+ + + -
i)t* i)x* by* i)z*

( l___)b(u*X*xx + v*X*xy + w*X*xz-q* x)

RE# 57x* +

( l_.__')O(u*'_*xy + v*'r,*yy + w*X*yz-qy*)

RELJ _)y*

+

(D.44)

+ %*zz
(1._.[___t)(u*_*xz v*_*y___zz? w* -qz* )

\RELJ _z*

Where the heat flux terms are defined as:

q*x = g* c)T* (D.45)

RELM, 2(7 - 1)Pr _x*

q, = g* /)T__.._* (D.46)

Y RELMoo2(7 - 1 )Pr i)y*

q, = g* oqT_____** (D.4 7)

z RELM 2(7-1)Pr_Z*

From equations (D.9), (D.24-D.26), and (D.42), we can place these in equation in vector
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form. The resulting expression is the sameasequation (2.35).

DE* _F* bG* 1 (OE*v _F*v3Q* + _ + _ + _= +
()t* ()x* t)y* i)z* R e L \ i)x* ()y*

(D.48)

Where Q*,E*, F*, G* are:

Q* =
p,v* E*=

p'w* I

E*_J

p*u *

p*u .2 + p*

p*u*w _

'E* t + p*)v _

F* =

p*U*V*

p*v .2 + p*

p*V*W*

( E* t + p* )v*

G* =

p'w*

p*u*w*

p*V*W*

9

p'w*- + p*

(E* t + p* )w'

(D.49)

And E* v, F* v, G*v are:

E :,gv

F_v

G_ v _

0

T*xx

T*
xy

T,*xz

u*'C*xx + v*'C*xy + w*'C*xz - q*

0

xy

T*
YY

T*
yz

tl*"C*xy + v*T.*yy + W*T,*y z -- q*

0

T.*xz

T,*
yz

T,*zz

tl*'C*xz + V*T*yz + W*'t*zz - q*z

(D.50)
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APPENDIX E

Transformation of the Navier-Stokes Equations

First we will begin by solving equation (2.64). Repeated for convenience:

1 0 0 0

_t _x _y _z

_lt fix fly rl z

¢t ¢x ¢y ¢z

1

Y.c

Z, C

0 0 0

x_ xq x¢

Y_ Yn Y¢

zq z¢

-1

(E.1)

In order to solve for each matrix element on the left-hand-side, it will be necessary to take the

inverse of the right-hand-side matrix. To expedite this calculation, a symbolic math program,

Maple V was used. Figure E. 1 is the output from this Maple V session.

IrHe Edit Vilw lllserl formal Options Window Help Holp

I

!>

Figure E. 1 Maple V session, calculation of metrics.

Page 78



With thefollowing generalizedtransformation,thegoverningequationswill be transformed.

x = x(_, 11,¢) (E2)

Y = Y(_, rl, t) (E.3)

Z = Z(_, rl, t) (E.4)

t = 1: (E.5)

Using the chain rule of partial differentiation on these expressions, the following deriva-

tives result:

_ __ ataa a ta +_ a +--_ (E.8)

az aza_ azarl aza¢

These derivatives will then have to be applied to the governing equations. For this anal-

ysis, we will apply the derivatives separately to each of the nondimensional elements of

equation (2.35). The continuity equation written in non dimensional form is:

ap a(pu) + a(pv) + a(pw) _ 0 (E.10)
0-7+ ax a---y- az
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Applying the transformation derivatives we have:

aCao anao aCao ap
0-7a-_+57_ +0-7a-_+_ +

aCa(pu)a_a(pu) arla(pu) + +
ax a_ + ax arl ax a_

a@(pv) + an a(pv) + aCa(pv) +
ay a_ ay an ay a¢
a@(pw) ana(ow) aca(pw)_
az a_ + az _ + az a_ -

0

(E.11)

Rearranging and reducing:

0p

a(Pu)a_ ...,(--_u)+ ,.,_ a¢ ++nxa r a(_u)Cx

a(pv) a(pv) + Cya(__v)+_y a---_-+ny-a_-- •-" ",a

Cza(pw) a(pw) + Cza(_w) _a----_ +nz an
0

(E.12)

a_ +
oz

Op ,xa(_) O(pv) ,zO(_v)_t_=_ + +_y Oq--_ + +

+,l_ _ +q--+qza(_ w +qt_ _ a(Pu) y OqO(Pv) )

ap ¢ a(p__u) a(pv) ¢ a(p__w)
Ct_'_ + x a¢ +¢y a¢ + Z a¢ - 0

(E.13)

0p
0-7 +

a[p(_t + _xu + CyV + _zW)]
+

a_
O[p(q t + qx u + rlyV + l"lzW)]

On

c)[P(¢t + Cx u + CyV + CzW)]

a¢

+

=0

(E.14)
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As mentioned in chapter two, the quantities in parenthesis of equation (E. 14) are the con-

travariant velocities. Restated, they are:

U = _t +_x y +_yv+_z v

V = Vlt + VlxY + rlyV + 1]zV (E.15)

W = _t +_x y +_yv+_z v

Rewriting equation (E. 14):

___pp+ O(oU) + O(pV_.___._)+ O(pW) _ 0 (E.16)

an

Next, we will transform the x direction momentum equation. In non-dimensional form,

the x component of the momentum equation is:

O(9u) + O(P u2 + P) + + - (E.17)
Ot i)x by t)z RELY. Ox + _ + i)z )

Applying the transformation derivatives to equation (E. 17):

 (pu)0___0(gu) + _ + + +
0t bE 0t Orl 0t 0 4 0T

_)_/)(pu 2 + p) + _)rl/)(P uz + p) +/)¢t)(P u2 + p)

ax at ax _ ax at

O_O(puv)O_O(puv) + OrlO(puv) + _ +
by _ _y On _y a_

O_O(puw)O{b(puw) Orl/)(puw) +
Oz a_ +Oz On _

+

(E.18)
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Rearranging and reducing:

8(pu2+p) - 8(pu2+p) t 8(pu2 + P)
x, 7_- +.x _i +x 7¢

t a(puv) - a(puv) p_cv)Y N + 'b' _ + %a( +

a(puw) a(puw) + ¢za(puw) _tz at +nz 3q - at

1 I O'Cxx Or.xx a'Cxx'_

Re L_tX-_-_t + rlx-_-ff + tx-g-(_ ) +

1 r O'cxv OXxy I_'txyN

-_e-eL lCy-__ + rly--_ + ty_--_t ) +

1 " b'Cxz O'Cxz i_r'xz_

÷

(E.19)

Further

(E.20)
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Also

a(pu) +
c3x

a[pu(_, + _u + _yV+ _zw)+ _xP]
+

a¢
a[pU(T_t +"qx u + 1]yV + qz w) + l]xP]

+
an

a[pu(¢, + Cxu + Cyv+ Czw)+ _xpl

a¢
a(_x'%,+ {yLy + Cz'C_z)

4-

Re L a_

1 a(qxXxx + rlyX_y + rlzXxz)
4-

Re L qo_

I a(¢_x_ + Cy'%,+ r,zLz)

Re L a¢

Once again, the contravariant velocities can be reduced:

a(puU + Cxp) a(puV + nxp)a(pu) + +
ax a_ an
1 a(_xXxx + _yXxy + {zXxz )

+

Re L _

1 a(q.x +qyX_y+qzXxz)

Re L a¢

1 a(¢xT'xx 4" CyT, xy 4" CZTXZ )

Re L a¢

4-

a(puW + ¢_p)
+

a¢

(E.21)

(E.22)

Also, the viscous stress tensors are given by:

2 f igu iOv 3w)Xxx = -_l.t_2-_x Or
(E.23)

2 i)v au igw

'_YY= 31"t(2_ OX _Z'Z)
(E.24)
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2 f Ow _gu 3v)Xzz = "3_tt2"_z Ox _ (E.25)

(C3_y Ov) (E.26)T,xy = _t + _X

aw Ou)
(E.27)

_v

Xyz = _ "_ZZ+
(E.28)

These terms will also have to be transformed. Applying the transformation derivatives

to equation (E.23), we get:

'txx = 5_"_x'_ - Ox 3'rl + 2_x_) -

2. (a_ av 3"rl av 3; av'_

_"tgyy_ +ay_ +gyyRa
2.(agaw anaw agaw)
_%gzz_+az_ +gzzg_

(E.29)

Rearranging:

2 (,.,. /)u ,. /)v ,. i)w'h

%xx = 5_tZ_x'_-gY'_-_Z-_) +

2 (2 aU aV

2 f . Ou . i)v . i)w'_

(E.30)
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Transforming equation (E.24):

aCav)2.;,,agav 2_nav 2_y__ YY = "31xt /-""_y"_ + a y _l +

2. (a_au anau aCau)

2. (a_aw anaw aCaw)

(E.31)

Rearranging:

2 (2" bv ,. _gu ,. _gw)
_yy- g't _y_-_x_-_z_) +
2 f _v au aw'_

5_t_,2n y-_-nx _-n z-_ ) +
2 [ • Ov .- _u _ _w_

(E.32)

Transforming equation (E.25):

+ 011 2_zz_--_¢) -_zz= 5_1,_ az
2. (_ _gu 011 au at _gu'_

5"Cgxg¢+a-7N+gx_)
2 (a_av _grlav a;av_
5_gy_ +ay_ +gyyg;j

(E.33)

Rearranging:

2 (2" aw ,. _gu ,. /gv'_
_zz- g'l, _z_-_x_-_y_) +
2 (2 igw ,9u ,9v'_

2 (2 _. Ow _. Ou _. Ov'_
51"l't _z-_ -_x'_-_y'_)

(E.34)
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Transforming equation (E.26):

, (aCa. ana. aCa._ . eaCav anav aCa_

Rearranging:

( _u _u _u _v _v _v)xy= _ _y_ +ny_ +cy_ +_x_ +nxN +Cx_

Transforming equation (E.27):

./aCaw anaw a_Caw_.faCau anau aCa_
;

Rearranging:

_ = _ Cx_ +nx_ + + +nz_ +

Transforming equation (E.2):

./aCav anav aCav_ ./aCaw anaw

Rearranging:

(av av av ¢ aw aw ¢ aw5"Cyz: _ Cz_+nz_+¢z_ + ya¢ +ny_+ ya¢)

A similar analysis can be done for the y and z component momentum equations.

(E.35)

(E.36)

(E.37)

(E.38)

(E.39)

(E.40)
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The transformations for theseequations are respectively:

_)(pv) + _(9 vU + GyP) + _)(ovV + rlyP) + O(9vW + _vP).

O.c o{ On 04

10(¢xXxy + _yXyy + _zr.yz)
+

Re L at

1 3(rlxXxy + qyXyy + qzXyz)
+

Re L _

1 t)(_x'Cxy + _y'Cyy + _z'Cyz)

Re L _

O(pwU + _zp) O(pwV + rlzp) _(pwW + _zp)
_(_W) + + +

1 a(_xXxz + _yXyz + _z'Czz)
+

Re L _

1 _(rl_Xxz +rlyxyz + rlzXzz )
+

Re L _

1 O(_xXxz + _yTyz "1- _ZT, ZZ )

Re L i)_

The last equation is the energy equation. Restating the energy equation we have:

(E.41)

(E.42)

t)E t t)((E t + p)u) t)((E t + p)v) t)((E t + p)w)

_--'i- + _x + _Y + _z

1 O(U'txx + v'r'xy + W'Cxz - qx)

Re L Ox Re L OY

10(U'Cxy + V'Cyy + W'_ y z - q y)
-t-

(E.43)

1 O(U'Cxz + V'Cyz + W'Czz - qz )

Re L Oz
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Beginning first with the le_hand-side of equation (E.43),the transformation begins as:

_E t OE t _E t OE t

+ N + + +
O((E t + p)u) _((E t + p)u) _((E t + p)u)

_x _ +nx on + ;x _;

O((E t + p)v) O((E t + p)v) O((E t + p)v)

_Y _ + Tly OIl + _y _

_((E t + p)w) _((E t + p)w) _((E t + p)w)

+

+

LHS

(E.44)

Rearranging:

_)E t
_+
Ox

O(_tEt + ((E t + p)_x u) + ((E t + p)_yV) + ((E t + p)_zW))
+

O(qtEt + ((E t + p)rlxU) + ((E t + p)rlyV) + ((E t + p)qzW))

_(_tEt + ((E t + p)_x u) + ((E t + p)_yV) + ((E t + p)_zW))

+

LHS

(E.45)

Further rearranging:

OE t
_+
Ox

_(_tEt + (E t + p)(_x u + _yV + _zW))
+

_(TItE t + (E t + p)(rlxU + TlyV + qzW))
+

_q

_(_tEt + (E t + p)(_x u + _yV + _zW))
E LHS

(E.46)
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Adding and Subtracting like terms to help in reduction:

_E t

a--Y+

t)(_tEt + (_tP-_t p) + (Et + P)(_xU + _yV + _zW))
+

t)(rltE t + (TltP -rltP) + ( E t + p)(rlxU + TlyV + TlzW) )
+

on

_)(_tEt +(_tP-_tp) +(E t + p)(_x u +_yV +_zW))
= LHS

(E.47)

Rearranging terms to help to combine terms defined as contravariant velocities we have:

OE t
--+

t)((Et + P)(_t + _x u + _yV + _zW)-_t p)
+

O((E t + p)(ll t + llxU + TlyV + rlzW)-'rltP)
+

on

O((Et + P)(_t + _x u + _yV + _zW)-_t p)
LHS

(E.48)

Final reduction yields:

OE t O((E t + p)U-_tP)
--+ +

O((E t + p)V-rltP) _)((E t + p)W-_tp)
+

on
p LHS

(E.49)
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Continuing on with the right-hand-side, we have:

RHS(ReL)=

_(U'_xx + V'txy + w'r, xz - qx ) _(U'_xx + v'r, xy + w'r, xz - qx ) +

_x _ +nx _n
_)(u'r, xx + v'r, xy + w'r, xz - qx )

_x _
t)(u,r, xy + v'r, yy + w'r,y z - qy)

"lqy 01]

_(u'r, xz + v'r,y z + w'r, zz - qz )

O(u'r, xz + V_y z + w'r, zz - qz )

t)(u'r, xy + v'r, yy + W'_y z - qy)

+ _y t)_
-!-

t)(u,r, xy + V_yy + WT, y z - qy)

+ _y t)_
+

_)(UT, xz + VT, y z + WT, zz - qz ) +

+qz Oq

Combining terms:

(E.50)

RHS(ReL)=

O(_x(U'Cxx+ VXxy+ WXxz-qx))
+

t)(_z( U'r,xz + VX yz + W'_zz - qz) )
+

t)(_y(U_xy + V'Cyy + WT, yz-qy)) +

t) ( rl x ( U"r,x x + v'r, x y + W "Cx z - q x ) )
+

_n _n
t)(Vlz(U'r, xz + v'r, y z + WXzz - qz ))

+

t)(,rly(U,r, xy + v'r, yy + WXy z - qy)) (E.51)+

on
O(_x(UT, xx + VXxy+ W'Cxz-qx)) +

O(_z(U'T, XZ + V'T,yz + W'Czz -- qz) )

t)(_y(UT, xy + v'r, yy + W'_yz -qy)) +

At this point we have already transformed the viscous shear stress terms. The only other

terms that contain derivatives are the heat flux terms.
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Applying the transformation to the x-direction heat flux term, we get:

(a_aV
qx = (7- 1)M2_ReLPr

anav a_ar_
t)x Orl + _x _ ) (E.52)

Reducing to its final form:

qx --
u_ (_ aZ ar ; ar_

(7- 1)M2_'ReL Pr_" xa_ + rlx'_ + x_}

Similarly, for the y and z directions respectively are:

(_ ar ar ; av_
qy = -- _ + qy_-_ +

(7- 1)M2=Re L Prk'-_y a_ Y-_--_J

(_ ar nay _ av_
qz = _+ +

1) "-_ _ R e L P r _''_ z O_,v, _ _ z "_ ,}(r-

(E.53)

(E.54)

(E.55)

Finally we can put equations (E.16), (E.22), (E.41), (E.42), (E.49), and (E.51) back into vec-

tor form.

a"'_ -_"_ + -_ + a----_- R-e L _--_ + -_ + "-_ ) (E.56)
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Where

pl
pul

1 , 1

j pv[ = j

E t

p u U + _xP

pvU + _yP

pwU + _zP

(E t + p)U-_tp

pV

puV + qxP

1 pvV+qy pF=j

I( pwV + qz pE t + p) V - qtP

1

pW

puW + _xP

pvW + _yP

pwW + _z p

(E t + p)W- _t p

(E.57)

The viscous flux terms E v, F v, G v are:

= j(_xEv+_yFv+_zG v)

F v = ('qxEv + "qyF v + rlzG v)

-- 1 _x Ev + + _z Gv)G v = _( _yFv

Here, both sides of the equation (E.54) have been divided by the Jacobian.

(E.58)
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APPENDIX F

Derivation of the Thin Layer Approximation

Let us first begin with equation (E.22), the x-direction momentum equation. Written again:

O(puU+_xp) O(puV+rlxP) O(puW+kxp)
a(pu) + + +

0z a_ On 0k

1 a(_xT'xx "t- _yT, xy "1- _z'_xz)
+

Re L _

1 _(qx'Cxx + rly'Cxy + rlz'Cxz)

Re L _
1 _(kxL, x + ky'Cxy+ kzXxz)

Re L Ok

+

(F.1)

Lets only consider the right-hand-side of this equation, the viscous flux terms:

1 3(_xXxx+ Cv'r'xy+ _z'txz) 1 t)('rix'Cxx+ Tly'Cxy+ rlzZxz)

RHS - Re L O_ + Re L _ +

1 _(k_Xx_+ ky'Cxy+ kzLz)

Re L Ok

(F.2)

As stated in chapter two, the thin layer approximation reduces down to terms that contain deriva-

tives only taken with respect to Zeta. Reducing equation (F.2) we have:

10(kx'r'xx + kYT'xY+ kzT'xz)

Re L Ok
RHS = (F.3)

Expanding this out we have:

RHS = -_e,e OIkx(_g(2(_xU{ + rlxUn + kxUQ-(_yV{ + rlyVn + kY l"_ )-

(_zW_+ qzWn+ kzw;))) +

ky(_(_),u_ + 1]yU.q + kyU; + _xV_ + l"lxV n + kxV;)) +

kz(_t(_zu_+ qzun + kzu; + _xw_+ qxw,_+ kxw;))l/_k

(F.4)
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Further reduction yields:

1 2
+ _y(lJ.(_yU; + ¢xV¢)) -I-

(F.5)

Expanding out:

E_x"_-_y_-_w_ " _ 11 _ 4 2 2 2 + ;yU;g+ ;x;yV;O+ ;zu;g + ;x;xzW;B
RHS =

(F.6)

Re L _

Rearranging:

RHS =
(F.7)

Re L _

Further rearranging:

1 1 1 2

, _I_+ _+_b._+_yV_+_zW_+_xU_1
RHS =

Re L _

(F.8)

Finally we have:

RHS =

E 2 1 ]1 a B(_2x + _ + _z)U_ + _l.t_x(_xU_ + _yV; + _zW_)

Re L _

(F.9)

A similar analysis can be done for the y and z components of the momentum equations.

There results respectively are:

RHS -
1

Re L _

(F.IO)
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RHS =

2 1 ¢ _zW;)]

Re L O_

Lastly, we will reduce the energy equation. Rewriting equation (E.49):

(Ell)

RHS(ReL)=

O(_x(U,Cxx+ V,txy + W,Cxz_qx)) O(_y(U'Cxy+ V'Cyy+ W'tyz-qy))
+ +

t)(_z(UX xz + v'r, yz + W'tzz - qz) )
+

_)(Tix(U,r, xx + V%xy + W,_xz_qx)) ()(lly(UT, xy+ v'r, yy+ w'r, yz-qy))
+ +

3(llz(U'r, xz + V%yz + W't zz- qz) )
+

_(_x(U,r, xx + v,r, xy + WXxz_qx)) ()(_y(U,r, xy+ v'r, yy+ W_yz-qy))
+ +

t)(_z(UT, xz+ v'r, yz+ w'r, zz-qz))

Reducing yields:

(F.12)

RHS(ReL)=

O(_x(U'r, xx + V'_xy + W'txz - qx)) +

t)(_z(UT, xz + v'r, yz + W'tzz- qz) )

t)( _y ( U'r,xy + VX yy + w'r, yz - q y) ) + (F.13)
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Let us first reduce each of the shear stress terms and the heat flux terms.

Reducing:

2 [ .- _)u _ 3v - _)w'_

"Cxx = "_g t 2 _ x "_ -_ y "_-_ z "_-_) +

2 (2 _u Ov _w_
lilt TIx'_--Tly'_--Tlz'_) +

2 r . _u . _v . _w'x

_t2;xN-;y_-_z_)

2 (2 _. _u _. bv _. bw'_*xx: _t _x_;%_;-_z_)

(F.14)

(El5)

Similarly:

2 f • _)v .- _)u .- _)w_

_yy- 5_t2_yr;-;x_-_zr;) (F.16)

2 (2" ()w _. ()u _. ()v'_
T,ZZ = "_l.t t _ z -_ - _ x "_ - _ y "_ )

(F.17)

( au ¢av5"Cxy = _t eye+ x2¢)
(F.18)

% = _ CxN+ zaU (F.19)

_yz= gt, z_;

The heat flux terms can be reduced to the following:

QX _ _

(y - 1 )M2,_ReLPr

(F.20)

(F.21)
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Similarly for the y and z directions:

qy =
(7- 1)_/_°°ReL Prk'_y a--C)

(F.22)

QZ --

_t OT

('y - 1)M _,Re L

(F.23)

Substituting the shear stress and heat flux terms into equation (E 13), we have:

RHS(ReL)=

¢x u_la 2¢x_-¢-;y_--¢C-;z_- ¢ + vl.t ¢.v'_ + ;x'_¢ + wl'tk_x'_¢ + gz-_¢) + (T- 1)M2_ReL Pr_" x_-_j))

a¢

c ('Y _ t.t /)T,, (Ez4)

a_

_ ( aw a, aw 2 :.,.aw_a,,_av_ (y_ l)M2 ReLPr t :3¢)))

a¢

Expanding:

RHS(ReL)=

J4 .2_u 2 . . bv 2 ,. _. bw 3u .23v .2_w au

(y- I )MZ.ReL Pr xa¢ )

a¢

o3 _2o_u OV 4 _2_V 2 .. _U 2 _ ,., _W OqV .2_W I.t .2aT_

(T- I )I_-ReLPr(_"_ J

(F.25)

3¢
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Rearranging:

RHS(ReL)=

_(_2[- {3u 2 3V 2 _4_2"_ _TG fl_2 _U2_ 2 . _ 3V 2 _ . 3W . ,. ,. 3U+ W" r v 3U)

_(.2F (3u 2 3v 2 3w2"_ 3Tq {1.2 3v2"_ 2 .. 3u2 .. 3w .,. 3v wt.t;j,_ _v)

3_

3(.2F (3u 2 3v 2 _) 3TI {1_2 3w2"_ 2 . ,.3u 2 . ,. _.3v 3w vl.t_j,_z_ )

3;

(v.26)

where a is:

a: _ (F.27)
(_ - 1)M2_ReLPr

Reducing even further we finally, with further reduction, we have:

RHS(ReL)=

2 2 . 2 V f3U 2 3V2 OW2"_ 3T-] 1 f. 3u _ _v }+ + + _)(_xu + (E28)

We can now put equations (F.9), (E 10), (F.11), and (F.28) into vector form. One will notice

there are no viscous contributions from the continuity equation, and therefore the first

element of the viscous flux vector will be zero. We can now show the thin layer viscous

flux vector S as:

1
s=_

O

2 2 2 1
_t(_ + _,.+ _)u; + ._la_(_xU; + _,y; + _w;)

2 1
la(_;2<.+ ;2,.+ L)v; + 71_;_,(L<.;+ ;v;.. + e_:.,r>)

2 1

2 2. _2)Vn(3_2 + 3V2 3W2) 3T"t [ #'+. 3It . 31' +_zl_j(_xii+__W_

(F.29)
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